Tutorial 3
 Hydrostatic force on submerged bodies

1. A vertical rectangular gate, 1.4 m high and 2 m wide, contains water on one side. Determine the total resultant force acting on the gate and the location of c.p.

Solution:
Area $(A)=2 \times 1.4=2.8 \mathrm{~m}^{2}$
Location of CG $(\bar{y})=(3+1.4 / 2)=3.7 \mathrm{~m}$
Resultant force on gate $(\mathrm{F})=$?
$\mathrm{Cp}\left(y_{p}\right)=$?
$F=\gamma A \bar{y}=9810 \times 2.8 \times 3.7=101631 \mathrm{~N}=101.631 \mathrm{KN}$
M.I. about CG $\left(I_{G}\right)=\frac{1}{12} \times 2 \times 1.4^{3}=0.457 \mathrm{~m}^{4}$
$y_{p}=\bar{y}+\frac{I_{G}}{A \bar{y}}=3.7+\frac{0.457}{2.8 x 3.7}=3.74 \mathrm{~m}$
2. An inclined rectangular gate (1.5 m wide) contains water on one side. Determine the total resultant force acting on the gate and the location of c.p.

Area $(A)=1.5 \times 1.2=1.8 \mathrm{~m}^{2}$
Location of CG $(\bar{y})=(2.4+1.2 \operatorname{Sin} 30 / 2)=2.7 \mathrm{~m}$
Resultant force on gate $(\mathrm{F})=$?
$\mathrm{Cp}\left(y_{p}\right)=$?
$F=\gamma A \bar{y}=9810 \times 1.8 \times 2.7=47676 \mathrm{~N}=47.676 \mathrm{KN}$
M.I. about CG $\left(I_{G}\right)=\frac{1}{12} x 1.5 x 1.2^{3}=0.216 \mathrm{~m}^{4}$
$y_{p}=\bar{y}+\frac{I_{G} \operatorname{Sin}^{2} \theta}{A \bar{y}}=2.7+\frac{0.216 \operatorname{Sin}^{2} 30}{1.8 x 2.7}=2.71 \mathrm{~m}$
3. An inclined circular with water on one side is shown in the fig. Determine the total resultant force acting on the gate and the location of c.p.

Solution:
Area $(A)=\pi x \frac{1^{2}}{4}=0.785 \mathrm{~m}^{2}$
Location of CG $(\bar{y})=(1.8+1.0 \operatorname{Sin} 60 / 2)=2.23 m$
Resultant force on gate $(\mathrm{F})=$?
$\mathrm{Cp}\left(y_{p}\right)=$?
$F=\gamma A \bar{y}=9810 \times 0.785 \times 2.23=17173 \mathrm{~N}=17.173 \mathrm{KN}$
M.I. about CG $\left(I_{G}\right)=\frac{\pi}{64} x 1^{4}=0.049 \mathrm{~m}^{4}$
$y_{p}=\bar{y}+\frac{I_{G} \operatorname{Sin}^{2} \theta}{A \bar{y}}=2.23+\frac{0.049 \operatorname{Sin}^{2} 60}{0.785 \times 2.23}=2.25 \mathrm{~m}$
4. Gate $A B$ in the fig. is 1 m long and 0.7 m wide. Calculate force F on the gate and position X of c .p.

Solution:
Sp. wt of oil $(\gamma)=0.81 \times 9810=7946 \mathrm{~N} / \mathrm{m} 3$
Area $(A)=0.7 \times 1=0.7 \mathrm{~m}^{2}$
Location of CG $(\bar{y})=(3+1 \operatorname{Sin} 50+1 \operatorname{Sin} 50 / 2)=4.15 \mathrm{~m}$
Resultant force on gate (F) = ?
$x=$?
$F=\gamma A \bar{y}=7946 \times 0.7 \times 4.15=23083 \mathrm{~N}=23.08 \mathrm{KN}$
M.I. about CG $\left(I_{G}\right)=\frac{1}{12} x 0.7 x 1^{3}=0.058 \mathrm{~m}^{4}$

Vertical distance of CP from free surface
$y_{p}=\bar{y}+\frac{I_{G} \operatorname{Sin}^{2} \theta}{A \bar{y}}=4.15+\frac{0.058 \operatorname{Sin}^{2} 50}{0.7 \times 4.15}=4.161 \mathrm{~m}$
Vertical distance between CP from CG $=4.161-(3+1 \operatorname{Sin} 50)=0.395 \mathrm{~m}$
$x=0.395 / \sin 50=0.515 m$
5. The gate in the fig. is 1.2 m wide, is hinged at point B , and rests against a smooth wall at A . Compute (a) the force on the gate due to sea water pressure, (b) the horizontal force exerted by the wall at point A, and (c) the reaction at hinge B.

Solution:
Sp wt of sea water $(\gamma)=1025 \times 9.81=10055 \mathrm{~N} / \mathrm{m}^{3}$
Area $(A)=1.2 \times 3.6=4.32 \mathrm{~m}^{2}$
Location of CG $(\bar{y})=(5.1-2.2)+2.2 / 2=4.0 \mathrm{~m}$
a) Resultant force on gate (F) = ?
$F=\gamma A \bar{y}=10055 \times 4.32 \times 4.0=173750 \mathrm{~N}=173.75 \mathrm{KN}$
b) Force $\mathrm{P}=$?
M.I. about CG $\left(I_{G}\right)=\frac{1}{12} \times 1.2 \times 3.6^{3}=4.665 \mathrm{~m}^{4}$

Vertical distance of CP from free surface
$y_{p}=\bar{y}+\frac{I_{G} \operatorname{Sin}^{2} \theta}{A \bar{y}}=4.0+\frac{4.665 \times(2.2 / 3.6)^{2}}{4.32 \times 4}=4.1 \mathrm{~m}$
Vertical distance between B and $\mathrm{CP}=5.1-4.1=1 \mathrm{~m}$
Location of F from $B=1 / \sin \theta=1.636 \mathrm{~m}$
Taking moment about B,
Px2.2-173.75×1.636 = 0
$\mathrm{P}=129.2 \mathrm{KN}$
c) Reactions at hinge, B_{x} and $\mathrm{B}_{\mathrm{y}}=$?
$\sum F_{x}=0$
$\mathrm{B}_{\mathrm{x}}-129.2+173.75 \times 2.2 / 3.6=0$
$B_{x}=23.02 \mathrm{KN}$
$\sum F_{y}=0$
$B_{y}-173.75 \times 2.85 / 3.6=0$
$B_{y}=137.55 \mathrm{KN}$
6. Gate $A B$ in fig. is 4.8 m long and 2.4 m wide. Neglecting the weight of the gate, compute the water level h for which the gate will start to fall.

B
Solution:
Area $(A)=2.4 x h / \operatorname{Sin} 60=2.77 \mathrm{~h} \mathrm{~m}^{2}$
Location of CG $(\bar{y})=\mathrm{h} / 2 \mathrm{~m}$
Resultant force on gate (F) is
$F=\gamma A \bar{y}=9810 \times 2.77 \mathrm{hxh} / 2=13587 \mathrm{~h}^{2} \mathrm{~N}$
M.I. about CG $\left(I_{G}\right)=\frac{1}{12} \times 2.4 x\left(\frac{h}{\sin 60}\right)^{3}=0.308 \mathrm{~h}^{3} \mathrm{~m}^{4}$

Vertical distance of CP from free surface
$y_{p}=\bar{y}+\frac{I_{G} \operatorname{Sin}^{2} \theta}{A \bar{y}}=h / 2+\frac{0.308 h^{3} \operatorname{Sin}^{2} 60}{2.77 h x h / 2}=0.667 \mathrm{~h}$
Distance of F from $\mathrm{B}=(\mathrm{h}-0.667 \mathrm{~h}) / \operatorname{Sin} 60=0.384 \mathrm{~h}$

Taking moment about B,
$5000 \times 4.8-13587 \mathrm{~h}^{2} \times 0.384 \mathrm{~h}=0$
$h=1.66 m$
7. Find the net hydrostatic force per unit width on rectangular panel $A B$ in the fig. and determine its line of action.

Solution:
Area (A) $=2 \times 1=2 \mathrm{~m}^{2}$
Location of CG $(\bar{y})=2+1+2 / 2=4 \mathrm{~m}$ for water side
Location of CG $(\overline{y 1})=1+2 / 2=2 \mathrm{~m}$ for glycerin side
Resultant force on gate (F) = ?
$F=\gamma A \bar{y}$

Force due to water $\left(\mathrm{F}_{\text {water }}\right)=\gamma A \bar{y}=9.81 \times 2 \times 4=78.49 \mathrm{KN}$
Force due to glycerin $\left(\mathrm{F}_{\text {glyc }}\right)=\gamma A \overline{y 1}=12.36 \times 2 \times 2=49.44 \mathrm{KN}$
Net force (F) $=78.49-49.44=29.04 \mathrm{KN}$
M.I. about CG $\left(I_{G}\right)=\frac{1}{12} x 1 x 2^{3}=0.666 \mathrm{~m}^{4}$

Distance of $\mathrm{F}_{\text {water }}$ from CG $\left(y_{c p 1}\right)=\bar{y}+\frac{I_{G}}{A \bar{y}}=4+\frac{0.666}{2 x 4}=4.083 \mathrm{~m}$
Distance of $\mathrm{F}_{\text {glyc }}$ from CG $\left(y_{c p 2}\right)=\bar{y}+\frac{I_{G}}{A \overline{y 1}}=2+\frac{0.666}{2 x 2}=2.166 \mathrm{~m}$
Taking moment about B ,
$29.04 y=78.49 \times(5-4.083)-49.44 \times(3-2.166)$
$\mathrm{y}=0.945 \mathrm{~m}$
8. Circular gate $A B C$ in the fig. is $4 m$ in diameter and is hinged at B. Compute the force P just sufficient to keep the gate from opening when h is 8 m .

Solution:
Area $(\mathrm{A})=\pi x \frac{4^{2}}{4}=12.56 \mathrm{~m}^{2}$
Location of CG $(\bar{y})=8 \mathrm{~m}$
$\mathrm{P}=$?
Resultant force on gate (F)
$F=\gamma A \bar{y}=9810 \times 12.56 \times 8=985708 \mathrm{~N}=985.708 \mathrm{KN}$
M.I. about CG $\left(I_{G}\right)=\frac{\pi}{64} x 4^{4}=12.56 \mathrm{~m}^{4}$

Position of CP from free surface
$y_{c p}=\bar{y}+\frac{I_{G}}{A \bar{y}}=8+\frac{12.56}{12.56 x 8}=8.125 \mathrm{~m}$
Taking moment about B ,
985.7x0.125-Px2=0
$\mathrm{P}=61.6 \mathrm{KN}$
9. The tank in the fig. contains oil ($\mathrm{spgr}=0.8$) and water as shown. Find the resultant force on side $A B C$ and its point of application. $A B C$ is 1.2 m wide.

Solution:
Sp wt of oil $\left(\gamma_{\text {oil }}\right)=0.8 * 9810 \mathrm{~N} / \mathrm{m}^{3}=7848 \mathrm{~N} / \mathrm{m}^{3}$
Area $(A 1)=1.2 \times 3=3.6 \mathrm{~m}^{2}$

Area $(\mathrm{A} 2)=1.2 \times 1.8=2.16 \mathrm{~m}^{2}$
Location of CG for $\mathrm{AB}(\overline{y 1})=3 / 2=1.5 \mathrm{~m}$
Resultant force on $A B C=$?

Force on AB
$F_{A B}=\gamma_{o i l} A 1 \overline{y 1}=7848 \times 3.6 \times 1.5=42379 \mathrm{~N}$
Pt. of application of $F_{A B}=(2 / 3) \times 3=2 m$ below A

Force on BC
Water is acting on BC and any superimposed liquid can be converted to an equivalent depth of water.
Equivalent depth of water for 3 m of oil $=\frac{\gamma_{\text {oil }} h_{\text {oil }}}{\gamma}=\frac{7848 \times 3}{9810}=2.4 \mathrm{~m}$
Employ an imaginary water surface of 2.4 m .
Location of CG for IWS $(\overline{y 2})=2.4+1.8 / 2=3.3 \mathrm{~m}$
$F_{B C}=\gamma A 2 \bar{y} \overline{2}=9810 \times 2.16 \times 3.3=69925 \mathrm{~N}$
Point of application of $F_{B C}$ from A is

$\bar{h}=\overline{y 2}+\frac{I_{G}}{A \overline{y 2}}=3.3+\frac{\frac{1}{12} \times 1.2 \times 1.8^{3}}{2.16 \times 3.3}=3.38 \mathrm{~m}$
i.e. $3.38+0.6=3.98 \mathrm{~m}$ from A

Total force on side $A B C(F)=42379+69925=112304 \mathrm{~N}=112.304 \mathrm{KN}$
Taking moment about A,
$112304 y=42379 \times 2+69925 \times 3.98$
$y=3.23 m$
F acts at 3.23 m below A .
(Alternative method: Solve by drawing pressure diagram. Force = Area of pressure diagram x width. Take moment to find position of resultant force.)
10. Gate $A B$ in the fig. is 1.25 m wide and hinged at A. Gage G reads $-12.5 \mathrm{KN} / \mathrm{m}^{2}$, while oil ($\mathrm{sp} \mathrm{gr}=0.75$) is in the right tank. What horizontal force must be applied at B for equilibrium of gate $A B$?

Solution:
Sp wt of oil $\left(\gamma_{o i l}\right)=0.75 * 9810 \mathrm{~N} / \mathrm{m}^{3}=7357.5 \mathrm{~N} / \mathrm{m}^{3}$
Area $(A)=1.25 \times 1.8=2.25 \mathrm{~m}^{2}$

Location of CG for right side $(\overline{y 1})=1.8 / 2=0.9 \mathrm{~m}$

Force on $A B$ at the right side
$F_{\text {oil }}=\gamma_{o i l} A \overline{y 1}=7357.5 \times 2.25 \times 0.9=14899 \mathrm{~N}$
Pt. of application of $\mathrm{F}_{\text {oil }}=(2 / 3) \times 1.8=1.2 \mathrm{~m}$ from A

Left side
For the left side, convert the negative pressure due to air to equivalent head in water.
Equivalent depth of water for $-12.5 \mathrm{KN} / \mathrm{m}^{2}$ pressure $=\frac{P}{\gamma}=\frac{-12.5}{9.81}=-1.27 \mathrm{~m}$
This negative pressure head is equivalent to having 1.27 m less water above A .
Location of CG from imaginary water surface $(\overline{y 2})=2.33+1.8 / 2=3.23 \mathrm{~m}$

$\bar{h}=\bar{y}+\frac{I_{G}}{A \bar{y}}=3.23+\frac{\frac{1}{12} \times 1.25 \times 1.8^{3}}{2.25 \times 3.23}=3.31 \mathrm{~m}$ from IWS
i.e. $3.31-2.33=0.98 \mathrm{~m}$ from A

Taking moment about A
$P \times 1.8+14899 \times 1.2-71294 \times 0.98=0$
$\mathrm{P}=28883 \mathrm{~N}=28.883 \mathrm{KN}$
11. The gate $A B$ shown is hinged at A and is in the form of quarter-circle wall of radius 12 m . If the width of the gate is 30 m , calculate the force required P to hold the gate in position.

Solution:
Horizontal force $\left(F_{H}\right)=\gamma A \bar{y}=9810 \times(30 \times 12) \times 12 / 2=21189600 \mathrm{~N}=21189.6 \mathrm{KN}$ (right)
F_{H} acts at a distance of $12 \times 1 / 3=4 \mathrm{~m}$ above the hinge A .
Vertical force $\left(\mathrm{F}_{\mathrm{v}}\right)=$ Weight of volume of water vertically above $\mathrm{AB}=\gamma$ Volume $_{A O B}$

$$
=9810 x\left[\frac{\pi x 12^{2}}{4} x 30\right]=33284546 \mathrm{~N}=33284.546 \mathrm{KN} \quad \text { (downward) }
$$

F_{V} acts at a distance of $4 r / 3 \pi=4 \times 12 / 3 \times 3.1416=5.1 \mathrm{~m}$ from the vertical AO .
Taking moment about A,
P×12= $21189.6 \times 4+33284.546 \times 5.1$
$P=21209 \mathrm{KN}$
12. The water is on the right side of the curved surface $A B$, which is one quarter of a circle of radius 1.3 m . The tank's length is 2.1 m . Find the horizontal and vertical component of the hydrostatic acting on the curved surface.

Solution:
Horizontal force $\left(F_{H}\right)=\gamma A \bar{y}=9810 \times(1.3 \times 2.1) \times(2.5+1.3 / 2)=84361 \mathrm{~N}=84.361 \mathrm{KN}$ (right)

Vertical force (Fv) = Weight of imaginary volume of water vertically above AB

$$
\begin{aligned}
& =\gamma\left[\text { Volume }_{A O B}+\text { Volume }_{\text {AOCD }}\right] \\
& =9810 x\left[\frac{\pi x 1.3^{2}}{4} \times 2.1+2.5 x 1.3 \times 2.1\right]=94297 \mathrm{~N}=94.297 \mathrm{KN}(\text { downward })
\end{aligned}
$$

13. The 1.8 m diameter cylinder in the fig. weighs 100000 N and 1.5 m long. Determine the reactions at A and B, neglecting friction.

Solution:
Horizontal force $\left(F_{H}\right)=\gamma A \bar{y}=0.8 \times 9810 \times(1.8 \times 1.5) \times(1.8 / 2)=19071 \mathrm{~N}$ (right)

Vertical force $\left(F_{v}\right)=$ Weight of volume of water vertically above BDC
Vertical force $\left(\mathrm{F}_{\mathrm{v}}\right)=\left(\mathrm{F}_{\mathrm{V}}\right)_{\mathrm{DB}}-\left(\mathrm{F}_{\mathrm{V}}\right)_{\mathrm{DC}}=\gamma\left[\right.$ Volume $_{\text {BDECO }}-$ Volume $\left._{\text {DECD }}\right]$
$=\gamma$ Volume $_{B C D}$
$=0.8 \times 9810 x\left[\frac{\pi x 0.9^{2}}{2} x 1.5\right]=14978 \mathrm{~N}$ (up)
Reaction at $\mathrm{A}=\mathrm{F}_{\mathrm{H}}=19071 \mathrm{~N}$ (left)
Reaction at $B=$ Weight of cylinder $-F_{V}=100000-14978=85022 N$ (up)
14. In the fig., a 2.4 m diameter cylinder plugs a rectangular hole in a tank that is 1.4 m long. With what force is the cylinder pressed against the bottom of the tank due to the 2.7 m depth of water?

Solution:
Water is above the curve portion CDE, whereas it is below the curve portion $A C$ and $B E$. For $A C$ and $B E$, imaginary weight of water vertically above them is considered and the vertical force on theses part acts upwards.
Net vertical force $=\left(F_{V}\right)_{C D E}($ down $)-\left(F_{V}\right)_{A C}(u p)-\left(F_{V}\right)_{B E}$ (up)
= Weight of volume of water vertically above CDE- imaginary Weight of volume above arc
$A C$ - imaginary weight of volume above arc $B E$
$=\gamma[$ Volume above $C D E-$ Volume above $A C-V o l u m e ~ a b o v e ~ B B]$
$=9810 x[($ volume rectangle CEMN - volume semicircle CDE)

- (volume rectangleCRPN + volume sectorCOA - volume triangleROA)
- (volume rectangleSEMQ + volume sectorBOE - volume triangleBOS)]
$=9810 x\left[\left(2.4 \times 2.1 x 1.4-\frac{\pi x 1.2^{2}}{2} x 1.4\right)-\left(0.16 x 2.1 x 1.4+\frac{30}{360} x \pi x 1.2^{2} x 1.4-\frac{1}{2} 1.04 x .6 \times 1.4\right)-\right.$
$\left.\left(0.16 x 2.1 x 1.4+\frac{30}{360} \pi x 1.2^{2} x 1.4-\frac{1}{2} 1.04 x .6 x 1.4\right)\right]$
$=27139 \mathrm{~N}$ (down)

15. A dam has a parabolic profile as shown in the fig. Compute the horizontal and vertical components of the force on the dam due to the water. The width of dam is 15 m . (Parabolic area $=2 / 3\left(b^{*} d\right.$)

Solution:
Horizontal force $\left(F_{H}\right)=\gamma A \bar{y}=9810 \times(15 \times 6.9) \times 6.9 / 2=3502906 \mathrm{~N}=3502.906 \mathrm{KN}$ (right)

Vertical force (Fv) = Weight of volume of water vertically above $\mathrm{AB}=\gamma$ Volume $_{\text {above } A B}$

$$
=9810 \times \frac{2}{3} \times 3 \times 6.9 \times 15=2030670 \mathrm{~N}=2030.67 \mathrm{KN} \text { (down) }
$$

16. The bottled liquid ($\mathrm{sp} \mathrm{gr}=0.9$) in the fig. is under pressure, as shown by the manometer reading. Compute the net force on the 50 mm radius concavity in the bottom of the bottle.

Solution:

From symmetry, $\mathrm{F}_{\mathrm{H}}=0$
Manometeric equation for pressure,
$P_{A A}+\gamma x 0.07=\gamma_{H g} x 0.12$
$\mathrm{P}_{\mathrm{AA}}+0.9 \times 9810 \times 0.07=13.6 \times 9810 \times 0.12$
$\mathrm{P}_{\mathrm{AA}}=15392 \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{F}_{\mathrm{V}}=\mathrm{P}_{\mathrm{AA}} \mathrm{A}_{\text {bottom }}+$ Weight of liquid below $\mathrm{AA}=\mathrm{P}_{\mathrm{AA}} \mathrm{A}_{\text {bottom }}+\gamma$ Volume $_{\text {below } A A}$

$$
\begin{aligned}
& =\mathrm{P}_{\mathrm{AA}} \mathrm{~A}_{\text {bottom }}+\gamma\left[\text { Volume }_{\text {cylinder of height } 16 \mathrm{~cm}}-\text { Volume }_{\text {hemisphere of radius } 50 \mathrm{~mm}}\right] \\
& =15392 x \pi x 0.05^{2}+0.9 x 9810\left[\pi x 0.05^{2} x 0.16-\frac{1}{2} x \frac{4}{3} x \pi x 0.05^{3}\right] \\
& =129.7 \mathrm{~N} \text { (down) }
\end{aligned}
$$

17. The cylinder in the fig. is 1.5 m long and its radius is 1.25 m . Compute the horizontal and vertical components of the pressure force on the cylinder.

Solution:
$\mathrm{AB}=1.25+1.25 \operatorname{Sin} 45=1.25+0.88=2.13 \mathrm{~m}$
Horizontal force $\left(F_{H}\right)=\gamma A \bar{y}=9810 \times(2.13 \times 1.5) \times(2.13 / 2)=33380 \mathrm{~N}=33.38 \mathrm{KN}$ (right)
Vertical force (Fv) = Weight of volume of water vertically above ABC

$$
\begin{aligned}
& \quad=\gamma[\text { Volume } 1+\text { Volume } 2+\text { Volume } 3+\text { Volume } 4] \\
& =9810 x\left[\frac{1}{2} x \pi x 1.25^{2} x 1.5+0.88 x 1.25 x 1.5+0.5 x 0.88 x 0.88 x 1.5+\frac{1}{8} x \pi x 1.25^{2} x 1.5\right] \\
& =67029 \mathrm{~N}=670.29 \mathrm{KN} \text { (up) }
\end{aligned}
$$

18. The 1 m diameter $\log (\mathrm{spgr}=0.82$) divides two shallow ponds as shown in the fig. Compute the net horizontal and vertical reactions at point C , if the \log is 3.7 m .

Solution:
Horizontal force on $\operatorname{ADC}\left(F_{H 1}\right)=\gamma A 1 \overline{y 1}=9810 \times 3.7 \times 1 \times 1.2=43556 \mathrm{~N}$ (right)

Horizontal force on $\mathrm{BC}\left(F_{H 2}\right)=\gamma A 2 \overline{y 2}=9810 \times 3.7 \times 0.5 \times 0.5 / 2=4537 \mathrm{~N}$ (left)

Vertical force on ADC $\left(F_{\mathrm{v}_{1}}\right)=$ Weight of volume of water vertically above ADC
Vertical force $\left(F_{v 1}\right)=\left(F_{v}\right)_{\text {MNDCOAM }}$ (up)- $\left(F_{v}\right)_{\text {MNDAM }}$ (down)
$=\gamma$ Volume $_{\text {AOCD }}$
$=9810 x \frac{1}{2} x \pi x 0.5^{2} x 3.7=14254 \mathrm{~N}$ (up)
Vertical force on $\mathrm{BC}\left(\mathrm{F}_{\mathrm{v} 2}\right)=$ Weight of volume of water (imaginary) vertically above BC

$$
\begin{aligned}
& =\gamma \text { Volume }_{B O C} \\
& =9810 x \frac{1}{4} x \pi x 0.5^{2} \times 3.7=7127 \mathrm{~N} \text { (up) } \\
& =\gamma_{\text {log }} \text { Volume }_{\text {log }} \\
& =0.82 x 9810 x \pi x 0.5^{2} \times 3.7=23376 \mathrm{~N} \text { (down) }
\end{aligned}
$$

Weight of $\log (\mathrm{W})=\gamma_{\text {log }}$ Volume $_{\text {log }}$

Horizontal reaction at $\mathrm{C}\left(\mathrm{R}_{\mathrm{x}}\right)$
$-R_{\mathrm{X}}+\mathrm{F}_{\mathrm{H} 1}-\mathrm{F}_{\mathrm{H} 2}=0$

$R_{\mathrm{x}}=\mathrm{F}_{\mathrm{H} 1}-\mathrm{F}_{\mathrm{H} 2}=43556-4537=39019 \mathrm{~N}$ (left)
Vertical reaction at $C\left(R_{y}\right)$
$R_{y}+F_{V 1}+F_{V 2}-W=0$
$R_{y}=23376-14254-7127=1995 N$ (up)
19. The 0.9 m diameter cylinder in the fig. is 7 m long and rests in static equilibrium against a frictionless wall at point B. Compute the specific gravity of the cylinder.

Solution:

Vertical force $\left(F_{V}\right)=$ Weight of volume of water vertically above ADBECA
$=\left(F_{v}\right)$ on semi-circle $A C E+\left(F_{v}\right)$ on quadrant $B E$
For $B E$, imaginary weight of fluid vertically above it is considered

$$
\begin{aligned}
& =\gamma\left[\text { Volume }_{A O E C}+\text { Volume }_{\text {BOE }}+\text { Volume }_{A D B O}\right] \\
& =9810\left[\frac{1}{2} \pi x 0.45^{2} x 7+\frac{1}{4} \pi x 0.45^{2} x 7+0.45 x 0.45 x 7\right]=46670 \mathrm{~N} \text { (up) }
\end{aligned}
$$

The reaction at B is purely horizontal.

Weight of cylinder $(W)=F_{V}$
$\mathrm{W}=46670 \mathrm{~N}$
$\gamma_{\text {cyl }}$ Volume $_{\text {cyl }}=46670$
$\gamma_{c y l} \pi x 0.45^{2} x 7=46670$
$\gamma_{c y l}=10480 \mathrm{~N} / \mathrm{m}^{3}$
Sp gr of cylinder $=\frac{\gamma_{c y l}}{\gamma}=\frac{10480}{9810}=1.07$
20. Find the horizontal and vertical forces per m of width on the tainter gate shown in the fig.

Solution:
Horizontal force $\left(F_{H}\right)=\gamma A \bar{y}=9810 \times(7.5 \times 1) \times 7.5 / 2=275906 \mathrm{~N}=275.906 \mathrm{KN}$ (right)
F_{H} acts at a distance of $7.5 \times 2 / 3=5 \mathrm{~m}$ from water surface.

Vertical force (Fv) = Weight of imaginary volume of water vertically above ABCA

$$
\begin{aligned}
& =\gamma\left[\text { Volume }_{\text {sectorAOBC }}-\text { Volume }_{\text {triangleAOB }}\right] \\
& =9810 x\left[\frac{60}{360} x \pi x 7.5^{2} x 1-0.5 x 7.5 x(7.5 \operatorname{Cos} 30) x 1\right] \\
& =49986 \mathrm{~N}=49.986 \mathrm{KN} \text { (up) }
\end{aligned}
$$

F_{v} acts through the centroid of the segment $A B C A$.
21. The tank whose cross section is shown in fig. is 1.2 m long and full of water under pressure. Find the components of the force required to keep the cylinder in position, neglecting the weight of the cylinder.

Solution:
Pressure $=14 \mathrm{KPa}$
Equivalent head of water $=\frac{P}{\gamma}=\frac{14000}{9810}=1.43 \mathrm{~m}$
Apply 1.43 m water above the cylinder.
Horizontal force $\left(F_{H}\right)=\gamma A \bar{y}=9810 \times(0.9 \times 1.2) \times(1.43+0.9 / 2)=19918 \mathrm{~N}=19.918 \mathrm{KN}$ (right)
$\operatorname{Sin}(O E F)=0.3 / 0.6$
$\angle O E F=30^{\circ}=\angle E O D$
$\mathrm{EF}=0.6 \operatorname{Cos} 30=0.52 \mathrm{~m}$
Vertical force $\left(F_{v}\right)=\left(F_{v}\right)_{\text {MAbFOCDEm }}-\left(F_{v}\right)_{\text {MAed }}$
$=$ Weight of volume of water vertically above ABFOCDEA
$=\gamma\left[\right.$ Volume $_{\text {ABFE }}+$ Volume $_{\text {triangleEOF }}+$ Volume $_{\text {sector EOD }}+$ Volume $_{\text {quadrant }}^{\text {COD }}$ $]$
$=9810 x\left[0.52 x 1.43 x 1.2+0.5 x 0.3 x 0.52 x 1.2+\frac{30}{360} x \pi x 0.6^{2} x 1.2+\frac{1}{4} x \pi x 0.6^{2} x 1.2\right]$
$=14110 \mathrm{~N}=14.11 \mathrm{KN}$ (up)
Forces required to keep the cylinder in positions are: 19.918 KN to the right and 14.11 KN to the up.
22. Each gate of a lock is 6 m high and is supported by two hinges placed on the top and the bottom. When the gates are closed, they make an angle of 120°. The width of the lock is 7 m . If the water levels are 5 m and 2 m at upstream and downstream respectively, determine the magnitude of forces on the hinge due to the water pressure.

Solution:
$F=$ Resultant water force, $P=$ Reaction between gates, $R=$ total reaction at hinge
$\theta=30^{\circ}$
Width of lock $=3.5 / \cos 30=4.04 \mathrm{~m}$
Resolving forces along gate
$P \cos \theta=R \cos \theta$ i.e. $P=R \quad$ (a)
Resolving forces normal to gate
$P \operatorname{Sin} \theta+R \operatorname{Sin} \theta=F$
(b)

From a and b
$P=F / 2 \operatorname{Sin} \theta$

Horizontal force on upstream side $\left(F_{1}\right)=\gamma A 1 \overline{y 1}=9810 \times 4.04 \times 5 \times 5 / 2=495405 \mathrm{~N}$
F1 acts at $5 / 3 \mathrm{~m}=1.66$ from bottom
Horizontal force on downstream side $\left(F_{2}\right)=\gamma A 2 \overline{y 2}=9810 \times 4.04 \times 3 \times 3 / 2=178346 \mathrm{~N}$
F2 acts at $3 / 3=1 \mathrm{~m}$ from bottom
$F=F_{1}-F_{2}=495405-178346=317059 \mathrm{~N}$

Taking moment about the bottom to find the point of application of F ,
$317059 y=495405 \times 1.66-178346 \times 1$
$y=2.03 m$
$P=F / 2 \operatorname{Sin} \theta=317059 / 2 \sin 30=317059 N$
$R=P=317059 \mathrm{~N}$

Taking moment about bottom hinge
$R_{t} \times 6=317059 \times 2.03$
$R_{t}=107272 \mathrm{~N}=107.272 \mathrm{KN}$
$R_{b}=R-R_{t}=317059-107272=209787 \mathrm{~N}=209.787 \mathrm{KN}$
23. Find the net horizontal and vertical forces acting on the surface ABCDEF of width 5 m as shown in the figure below. $B C D$ is a half circle.

Solution:
$A B=2 / \operatorname{Sin} 45^{\circ}=2.8284 m$
$E F=2 / \operatorname{Sin} 45^{\circ}=2.8284 m$

Pressure force on inclined surface $\mathrm{AB}\left(F_{1}\right)=\gamma_{\text {water }} A_{1} \overline{y_{1}}=9810 \times(2.8284 \times 5) \times 1=138733 \mathrm{~N}$ which is perpendicular to $A B$
$F_{1 x}=F_{1} \operatorname{Cos} 45^{\circ}=138733 \cos 45^{\circ}=98099 \mathrm{~N}$ (right)
$F_{1 y}=F_{1} \operatorname{Sin} 45^{\circ}=138733 \operatorname{Sin} 45^{\circ}=98099 N$ (up)
For curved surface BCD
$F_{2 x}=\gamma_{\text {water }} A_{2} \overline{y_{2}}=9810 \times(2 \times 5) \times 3=294300 \mathrm{~N}$ (right)
$F_{2 y}=\gamma_{w a t e r} V_{\text {above } B C D}=9810 x\left(\frac{1}{2} \pi x \frac{2^{2}}{4}\right) x 5=77048 N$ (down)

Pressure force on EF due to water $\left(F_{3}\right)=\gamma_{\text {water }} A_{3} \overline{y_{3}}=9810 \times(2.8284 \times 5) \times 5=693665 \mathrm{~N}$ which is perpendicular to EF
$F_{3 x}=F_{3} \cos 45^{\circ}=693665 \cos 45^{\circ}=490495 \mathrm{~N}$ (right)
$F_{3 y}=F_{3} \operatorname{Sin} 45^{\circ}=693665 \operatorname{Sin} 45^{\circ}=490495 N$ (up)

Pressure force on EF due to oil $\left(F_{4}\right)=\gamma_{o i l} A_{4} \overline{y_{4}}=0.8 \times 9810 \times(2.8284 \times 5) \times 1=110986 \mathrm{~N}$ which is perpendicular to EF
$F_{4 x}=F_{4} \cos 45^{\circ}=1109955 \cos 45^{\circ}=78479 N$ (left)
$F_{4 y}=F_{4} \operatorname{Sin} 45^{0} 1109955 \operatorname{Sin} 45^{\circ}=78479 N($ down $)$
Net horizontal force $=98099+294300+490495-78479 \mathrm{~N}=804415 \mathrm{~N}$ (right)
Net vertical force $=98099-77048+490495-78479 \mathrm{~N}=433067 \mathrm{~N}$ (up)
24. Calculate the pressure force on the curved surface $A B C D$ as shown in the figure below. $A B$ is a quadrant of radius 1 m and $B C D$ is a semi-circle of radius 1 m . Take width of curve $=5 \mathrm{~m}$.

Solution:
Horizontal force on $\mathrm{AB}\left(F_{1 x}\right)=\gamma_{\text {water }} A_{1} \overline{y_{1}}=9810 \times(1 \times 5) \times 3.5=171675 \mathrm{~N}$ (right)
Vertical force on $\mathrm{AB}\left(F_{1 y)}=\gamma_{\text {water }} V_{\text {above } A B \text { (imaginary) }}=9810 x\left(\frac{1}{4} \pi x 1^{2}+3 x 1\right) x 5=185674 \mathrm{~N}\right.$ (up)

Horizontal force on BCD from the left side $\left(F_{2 x}\right)=\gamma_{\text {water }} A_{2} \overline{y_{2}}=9810 \times(2 \times 5) \times 5=490500 \mathrm{~N}$ (right)
Vertical force on BCD from the left side $\left(F_{2 y)}=\gamma_{\text {water }} V_{\text {above } B C D}=9810 x\left(\frac{1}{2} \pi x 1^{2}\right) x 5=77048 \mathrm{~N}\right.$ (down)

Horizontal force on BCD from the right side $\left(F_{3 x}\right)=\gamma_{o i l} A_{2} \overline{y_{3}}=0.82 \times 9810 \times(2 \times 5) \times 1=80442 \mathrm{~N}$ (left)
Vertical force on BCD from the right side $\left(F_{3 y)}=\gamma_{\text {oil }} V_{\text {above } B C D}=0.82 x 9810 x\left(\frac{1}{2} \pi x 1^{2}\right) x 5=63179 \mathrm{~N}\right.$ (up)

Net horizontal force $=171675+490500-80442=581733 \mathrm{~N}=581.733 \mathrm{KN}$ (right)
Net vertical force $=185674-77048+63179=171805 \mathrm{~N}=171.805 \mathrm{KN}$ (up)
25. Find the weight of the cylinder (dia. $=2 \mathrm{~m}$) per m length if it supports water and oil ($\mathrm{sp} \mathrm{gr}=0.82$) as shown in the figure. Assume contact with wall as frictionless.

Solution:

Downward force on $A C$ due to oil $\left(\mathrm{FV}_{\mathrm{AC}}\right)=$ Weight of oil supported above curve AC

$$
\begin{aligned}
& =\gamma_{\text {oil }} \text { Volume of oil above AC } \\
& =\gamma_{\text {oil }}\left(\text { Volume }_{A F C D}-\text { Volume }_{\text {quadrant } A C D}\right) \\
& =0.82 \times 9810\left(1 \times 1 \times 1-\frac{1}{4} \pi x 1^{2} \times 1\right)=1726 \mathrm{~N}
\end{aligned}
$$

Pressure at C due to 1 m oil $(\mathrm{P})=\gamma_{\text {oil }} x 1=0.82 \times 9810 \times 1=8044.2 \mathrm{~Pa}$
Equivalent head of water due to 1 m oil $=\frac{P}{\gamma}=\frac{8044.2}{9810}=0.82 \mathrm{~m}$
Apply 0.82 m water above EC.

Upward vertical force on CBE ($\mathrm{FV}_{\mathrm{CBE}}$) = Weight of water above CBE

$$
=\gamma\left(\text { Volume }_{\text {semi circle } C B E}+\text { Volume }_{\text {CMNE }}\right)
$$

$$
=9810\left(\frac{1}{2} \pi x 1^{2} x 1+0.82 x 2 x 1\right)=31498 \mathrm{~N}
$$

Weight of cylinder $=\mathrm{FV}_{\text {CBE }}-\mathrm{FV}_{\mathrm{AC}}=31498-1726=29772 \mathrm{~N}$
26. Find the magnitude and direction of the resultant pressure force on a curved face of a dam which is shaped according to the relation $y=x^{2} / 6$. The height of water retained by the dam is 12 m . Assume unit width of the dam.

0

Solution:
The equation of the dam
$\mathrm{y}=\mathrm{x}^{2} / 6$
$x=\sqrt{6 y}$
Consider an element of thickness dy and length x at a distance y from the base.
Area of element = xdy
Area of $\mathrm{OAB}=\int_{0}^{12} x d y=\int_{0}^{12} \sqrt{6 y} d y$
$=\sqrt{6} x \frac{2}{3}\left|y^{3 / 2}\right|_{0}^{12}=67.882 \mathrm{~m}^{2}$

Horizontal force $\left(F_{x}\right)=\gamma A \bar{y}=9810 \mathrm{x}(12 \mathrm{X} 1) \times 6=706320 \mathrm{~N}$
Vertical force $\left(\mathrm{F}_{\mathrm{y}}\right)=$ Weight of water vertically above dam OA
$=\gamma V o l_{O A B}=\gamma$ Area $_{O A B} L=9810 \times 67.882 \times 1=665922 \mathrm{~N}$
Resultant force $\left(F_{R}\right)=\sqrt{F_{x+}^{2} F_{y}^{2}}=970742 \mathrm{~N}=970.742 \mathrm{KN}$
Direction of resultant force $=\operatorname{Tan}^{-1} \frac{F_{y}}{F_{x}}=\operatorname{Tan}^{-1} \frac{665922}{706320}=43.31^{\circ}$
27. A cylinder, 2 m in diameter and 3 m long weighing 3 KN rests on the floor of the tank. It has water to a depth of 0.6 m on one side and liquid of sp gr 0.7 to a depth of 1.25 m on the other side. Determine the magnitude and direction of the horizontal and vertical components of the force required to hold the cylinder in position.

Solution:

$$
\begin{aligned}
& \mathrm{OA}=\mathrm{OB}=\mathrm{OC}=1 \mathrm{~m}, \mathrm{BD}=0.6 \mathrm{~m} \\
& \mathrm{OD}=1-0.6=0.4 \mathrm{~m} \\
& \mathrm{CD}=\left(1^{2}-0.4^{2}\right)^{1 / 2}=0.9165 \mathrm{~m} \\
& <C O D=\tan ^{-1}\left(\frac{0.9165}{0.4}\right)=66.4^{0} \\
& \mathrm{OE}=1.25-1=0.25 \mathrm{~m} \\
& <A O E=\cos ^{-1}\left(\frac{0.25}{1}\right)=75.5^{0} \\
& <A O B=180-75.5=104.5^{0} \\
& \mathrm{AE}=0.25 \tan 75.5=0.96 \mathrm{~m} \\
& \text { Weight of cylinder }=3 \mathrm{KN}=3000 \mathrm{~N}
\end{aligned}
$$

Net horizontal force $\left(F_{H}\right)=\left(F_{H}\right)_{A B}-\left(F_{H}\right)_{C B}=\gamma_{o i l} A 1 \bar{y} \overline{1}-\gamma A 2 \bar{y} \overline{2}$

$$
=0.7 \times 9810 \times 1.25 \times 3 \times 1.25 / 2-9810 \times 0.6 \times 3 \times 0.6 / 2=10797 \mathrm{~N} \text { (left) }
$$

Net vertical force $\left(F_{V}\right)=$ Weight of volume of oil vertically above $A B+$ Weight of volume of water vertically above $B C=\mathrm{Fv}_{\mathrm{AB}}$ (up) $+\mathrm{Fv}_{\mathrm{BC}}$ (up)

$$
=\gamma_{o i l} \text { Volume }_{A E B}+\gamma \text { Volume }_{B D C}
$$

$=\gamma_{\text {oil }}($ Volume of sector $A O B+$ Volume of $\triangle A O E)+$
$\gamma($ Volume of sector BOC - Volume of $\triangle C O D)$
$=9810 x 0.7\left(\frac{104.5}{360} x \pi x 1^{2} x 3+0.5 x 0.25 x 0.96 x 3\right)+\left[9810 x\left(\frac{66.4}{360} x \pi x 1^{2} x 3-0.5 x 0.9165 x 0.4 x 3\right)\right]$ $=32917 \mathrm{~N}$ (up)
The components to hold the cylinder in place are 10797 N to the right and $32917-3000=29917 \mathrm{~N}$ down.

Additional problems on hydrostatic force

For the system shown in figure, calculate the height H of water at which the rectangular hinged gate will just begin to rotate anticlockwise. The width of gate is 0.5 m .

Solution:
Force due to water $\left(F_{1}\right)=\gamma A \bar{y}$

$$
=9810 x(1.2 x 0.5) x(H-0.6)=5886(H-0.6)
$$

CP of F_{1}
M.I. about CG $\left(I_{G}\right)=\frac{1}{12} \times 0.5 \times 1.2^{3}=0.072 \mathrm{~m}^{4}$

Vertical distance of CP of F_{1} from free surface
$y_{p 1}=\bar{y}+\frac{I_{G}}{A \bar{y}}=(H-0.6)+\frac{0.072}{1.2 \times 0.5(H-0.6)}=\frac{(H-0.6)^{2}+0.12}{(H-0.6)}$

Force due to air pressure $\left(F_{2}\right)=P A=40 \times 1000 \times 1.2 \times 0.5=24000 \mathrm{~N}$, which acts at a distance of $\mathrm{H}-0.6$ from the free surface.
Taking moment about hinge,
$F_{1}\left[y_{p 1}-(H-1.2)\right]=F_{2} x 0.6$
$5886(H-0.6)\left[\frac{(H-0.6)^{2}+0.12}{(H-0.6)}-(H-1.2)\right]=24000 x 0.6$
$(H-0.6)^{2}+0.12-(H-1.2)(H-0.6)=2.446$
$\mathrm{H}=1.6 \mathrm{~m}$

A 3 m square gate provided in an oil tank is hinged at its top edge. The tank contains gasoline (sp. gr. = 0.7) up to a height of 1.6 m above the top edge of the plate. The space between the oil is subjected to a negative pressure of 8 Kpa . Determine the necessary vertical pull to be applied at the lower edge to open the gate.

Gasoline surface

Solution:
Head of oil equivalent to -8 Kpa pressure $=\frac{p}{\gamma_{\text {oil }}}=\frac{-8000}{0.7 \times 9810}=-1.16 \mathrm{~m}$
This negative pressure will reduce the oil surface by 1.16 m . Let $\mathrm{AB}=$ new level. Make calculation by taking $A B$ as free surface.
$\mathrm{h}=1.6-1.16=0.44 \mathrm{~m}$
$\bar{y}=(1.6-1.16)+\frac{1}{2} x 3 \operatorname{Sin} 45=1.5 \mathrm{~m}$
Hydrostatic force $(F)=\gamma_{o i l} A \bar{y}=0.7 \times 9810 \times(3 \times 3) \times 1.5=92704.5 \mathrm{~N}$
CP of F
M.I. about CG $\left(I_{G}\right)=\frac{1}{12} x 3 x 3^{3}=6.75 \mathrm{~m}^{4}$

Vertical distance of CP of F_{1} from free surface
$y_{p}=\bar{y}+\frac{I_{G} \operatorname{Sin}^{2} \theta}{A \bar{y}}=1.5+\frac{6.75 \operatorname{Sin}^{2} 45}{(3 \times 3) \times 1.5}=1.75 \mathrm{~m}$
Vertical distance between the hinge and $\mathrm{F}=1.75-0.44=1.31 \mathrm{~m}$
Taking moment about the hinge
Px $3 \sin 45=F x \frac{1.31}{\sin 45}$
$P x 3 \sin 45=92704.5 x \frac{1.31}{\sin 45}$
$\mathrm{P}=80962 \mathrm{~N}$

There is an opening in a container shown in the figure. Find the force P and the reaction at the hinge (R).

Solution:
Equivalent head of oil due to 24 Kpa pressure $=\frac{p}{\gamma_{\text {oil }}}=\frac{24000}{0.85 \times 9810}=2.9 \mathrm{~m}$ of oil
Apply 2.9 m of oil above the hinge.
$\bar{y}=2.9+\frac{1}{2} x 1.2 \operatorname{Sin} 30=3.2 \mathrm{~m}$
Hydrostatic force $(F)=\gamma_{o i l} A \bar{y}=0.85 \times 9810 \times(1.2 \times 1.2) \times 3.2=38424 \mathrm{~N}$
CP of F
M.I. about CG $\left(I_{G}\right)=\frac{1}{12} \times 1.2 \times 1.2^{3} 0.1728 \mathrm{~m}^{4}$

Vertical distance of CP of F_{1} from free surface
$y_{p}=\bar{y}+\frac{I_{G} \operatorname{Sin}^{2} \theta}{A \bar{y}}=3.2+\frac{0.1728 \operatorname{Sin}^{2} 30}{(1.2 \times 1.2) \times 3.2}=3.209 \mathrm{~m}$
Vertical distance between the hinge and $\mathrm{F}=3.209-2.9=0.309 \mathrm{~m}$

Taking moment about the hinge
$P x 1.2=38424 \times \frac{0.309}{\sin 30}$
$\mathrm{P}=19788 \mathrm{~N}$
$R+P=F$
$R=38424-19788=18636 \mathrm{~N}$

