Tutorial 4

Buoyancy and floatation

1. A rectangular pontoon has a width of 6 m , length of 10 m and a draught of 2 m in fresh water. Calculate (a) weight of pontoon, (b) its draught in seawater of density $1025 \mathrm{~kg} / \mathrm{m}^{3}$ and (c) the load that can be supported by the pontoon in fresh water if the maximum draught permissible is 2.3 m .

Solution:
a) Weight of pontoon $=$ Weight of water displaced

$$
\mathrm{W}=\gamma_{\text {water }} V_{\text {water displaced }}=9810 \times 6 \times 10 \times 2=1177200 \mathrm{~N}=1177.2 \mathrm{KN}
$$

b) Draught in sea water (D) = ?

Weight of pontoon $=$ Weight of sea water displaced

$$
\begin{aligned}
& 1177200=\gamma_{\text {sea water }} V \\
& 1177200=1025 \times 9.81 \times 6 \times 10 \times D \\
& D=1.95 \mathrm{~m}
\end{aligned}
$$

c) $D_{\text {max }}=2.3 \mathrm{~m}$

Load that can be supported in fresh water $(P)=$?
Total upthrust $\left(F_{B}\right)=$ Weight of water displaced

$$
=\gamma_{\text {water }} V_{\text {water displaced }}=9810 \times 6 \times 10 \times 2.3=1353780 \mathrm{~N}=1353.78 \mathrm{KN}
$$

$P=F_{B}-W=1353.78-1177.2=176.58 \mathrm{KN}$
2. A steel pipeline carrying gas has an internal diameter of 120 cm and an external diameter of 125 cm . It is laid across the bed of a river, completely immersed in water and is anchored at intervals of 3 m along its length. Calculate the buoyancy force per meter run and upward force on each anchorage. Take density of steel $=7900 \mathrm{~kg} / \mathrm{m}^{3}$.

Solution:
Buoyant force per $m=$ Weight of water displaced per m

$$
=\gamma_{\text {water }} V=9810 x \frac{\pi}{4} x 1.25^{2} x 1=12039 \mathrm{~N} / \mathrm{m}
$$

Buoyant force for $3 \mathrm{~m}\left(\mathrm{~F}_{\mathrm{B} 3}\right)=12039 \times 3=36117 \mathrm{~N}$
Weight for 3 m of pipe $\left(\mathrm{W}_{3}\right)=3 x \gamma_{\text {steel }} V_{\text {steel }}$

$$
=3 x 7900 \times 9.81 x \frac{\pi}{4} x\left(1.25^{2}-1.20^{2}\right)=22369 \mathrm{~N}
$$

Upward force on each anchorage $=\mathrm{F}_{\mathrm{B} 3}-\mathrm{W}_{3}=36117-22369=13748 \mathrm{~N}$
3. A wooden block of width 2 m , depth 1.5 m and length 4 m floats horizontally in water. Find the volume of water displaced and the position of center of buoyancy. The specific gravity of wooden block is 0.7.

Solution:

Weight of block $=$ Weight of water displaced
$\gamma_{\text {wood }} V_{\text {wood }}=\gamma_{\text {water }} V_{\text {water diplaced }}$
$0.7 \times 9810 \times 2 \times 1.5 \times 4=9810 \mathrm{~V}_{\text {water displaced }}$
$\mathrm{V}_{\text {water displaced }}=8.4 \mathrm{~m}^{3}$

Finding depth of immersion (h)
Weight of block $=$ Weight of water displaced
$\gamma_{\text {wood }} V_{\text {wood }}=\gamma_{\text {water }} V_{\text {water diplaced }}$
$0.7 \times 9810 \times 2 \times 1.5 \times 4=9810 \times 2 \times 4 \times h$
$h=1.05 m$
Position of center of buoyancy $=\mathrm{h} / 2=0.525 \mathrm{~m}$ from bottom
4. A piece of wood of sp gr 0.65 is 80 mm square and 1.5 m long. How many Newtons of lead weighing $120 \mathrm{KN} / \mathrm{m}^{3}$ must be fastened at one end of the stick so that it will float upright with 0.3 m out of water?

Solution:
Length of wood $=1.5 \mathrm{~m}$
Length of wood in water $=1.5-0.3=1.2 \mathrm{~m}$

Total weight of wood and lead $=$ Weight of water displaced
$\gamma_{\text {wood }} V_{\text {wood }}+\gamma_{\text {lead }} V_{\text {lead }}=\gamma_{\text {water }} V_{\text {water diplaced }}$
$0.65 x 9810 x 0.08^{2} x 1.5+\gamma_{\text {lead }} V_{\text {lead }}=9810\left[0.08^{2} x 1.2+V_{\text {lead }}\right]$
$61.214+120000 V_{\text {lead }}=75.34+9810 V_{\text {lead }}$
$\mathrm{V}_{\text {lead }}=0.000128 \mathrm{~m}^{3}$
Weight of lead $=\gamma_{\text {lead }} V_{\text {lead }}=120000 \times 0.000128=15.38 \mathrm{~N}$
5. A block of wood floats in water with 40 mm projecting above the water surface. When placed in glycerin of sp gr 1.35 , the block projects 70 mm above the surface of that liquid. Determine the sp gr of wood.

Solution:
A = Area of block
h = Height of block
$\mathrm{S}=\mathrm{sp} \mathrm{gr}$ of block

Weight of wooden block (W) $=\gamma_{\text {wood }} V_{\text {wood }}=S x 9810 x A h$
Weight of water displaced $\left(\mathrm{W}_{\mathrm{W}}\right)=\gamma_{\text {water }} V_{\text {water diplaced }}=9810 \times \mathrm{A}(\mathrm{h}-0.04) \quad$ (b)
Weight of glycerin displaced $\left(\mathrm{W}_{\mathrm{G}}\right)=\gamma_{\text {glycerin }} V_{\text {glycerin diplaced }}=1.35 \times 9810(\mathrm{~h}-0.07)(\mathrm{c})$
Here, $\mathrm{W}=\mathrm{W}_{\mathrm{W}}=\mathrm{W}_{\mathrm{G}}$

Equating a and b
Sx9810xAh= 9810xA(h-0.04)
$S=\frac{h-0.04}{h}$
Equating b and c
9810A(h-0.04) $=1.35 \times 9810 \mathrm{~A}(\mathrm{~h}-0.07)$
$\mathrm{h}=0.155 \mathrm{~m}$
$S=\frac{h-0.04}{h}==\frac{0.155-0.04}{0.155}=0.74$
6. A rectangular open box, 7.6 m by 3 m in plan and 3.7 m deep, weighs 350 KN and is launched in fresh water. (a) How deep will it sink? (b)If the water is 3.7 m deep, what weight of stone placed in the box will cause it to rest on the bottom?

Solution:
a) Depth of immersion (h) = ?

Weight of block = Weight of water displaced
$350000=\gamma_{\text {water }} V_{\text {water diplaced }}$
$350000=9810 \times 7.6 \times 3 \times h$
$h=1.56 \mathrm{~m}$
b) Weight of block and stone $=$ Weight of water displaced

$$
\begin{aligned}
& 350000+\text { Weight }_{\text {stone }}=\gamma_{\text {water }} V_{\text {water diplaced }} \\
& 350000+\text { Weight }_{\text {stone }}=9810 \times 7.6 \times 3 \times 3.7 \\
& \text { Weight }_{\text {stone }}=477572 \mathrm{~N}=477.57 \mathrm{KN}
\end{aligned}
$$

7. A stone weighs 500 N in air and 200 N in water. Determine the volume of stone and its specific gravity.

Solution:
Weight in air-Weight in water = Buoyant force
Buoyant force $\left(F_{B}\right)=500-200=300 N$
$\mathrm{F}_{\mathrm{B}}=$ Weight of water displaced
$300=\gamma_{\text {water }} V_{\text {water diplaced }}$
$300=9810 x V_{\text {water diplaced }}$
$V_{\text {water diplaced }}=0.0306 \mathrm{~m}^{3}$
Volume of stone $(\mathrm{V})=0.306 \mathrm{~m}^{3}$
Specific weight of stone $\left(\gamma_{\text {stone }}\right)=\frac{\text { Weight in air }}{V}=\frac{500}{0.0306}=16340 \mathrm{~N} / \mathrm{m}^{3}$

Specific gravity of stone $=\frac{\gamma_{\text {stone }}}{\gamma_{\text {water }}}=\frac{16340}{9810}=1.66$
8. A metallic body floats at the interface of mercury of specific gravity 13.6 and water in such a way that 30% of its volume is submerged in mercury and 70% in water. Find the density of the metallic body.

Solution:
Volume of metallic body $=\mathrm{V}$

Density of metallic body $=\rho$

Weight of metallic body = Weight of fluid displaced = Buoyant force due to mercury + Buoyant force due to water
$\rho g V=\rho_{\text {mercury }} g V_{\text {mercury diplaced }}+\rho_{\text {water }} g V_{\text {water diplaced }}$
$\rho x 9.81 x V=13.6 \times 1000 x 9.81 \times 0.3 \mathrm{~V}+1000 \times 9.81 \times 0.7 \mathrm{~V}$
$\rho=4780 \mathrm{~kg} / \mathrm{m}^{3}$
9. A wooden block $4 m \times 1 m x 0.5 m$ is floating in water. Its specific gravity is 0.76 . Find the volume of the concrete of specific gravity 2.5, that may be placed on the block which will immerse the (a) block completely in water and (b) block and concrete completely in water.

Solution:

a) Immersion of the block completely in water

Total weight of block and concrete $=$ Weight of water displaced
$\gamma_{\text {wood }} V_{\text {wood }}+\gamma_{\text {concrete }} V_{\text {concrete }}=\gamma_{\text {water }} V_{\text {water diplaced }}$
$0.76 \times 9810 \times 4 \times 1 \times 0.5+2.5 \times 9810 x V_{\text {concrete }}=9810 \times 4 \times 1 \times 0.5$
$V_{\text {concrete }}=0.192 \mathrm{~m}^{3}$
b) Immersion of the block and concrete completely in water

Total weight of block and concrete $=$ Weight of water displaced
$\gamma_{\text {wood }} V_{\text {wood }}+\gamma_{\text {concrete }} V_{\text {concrete }}=\gamma_{\text {water }} V_{\text {water diplaced }}$
$0.76 \times 9810 \times 4 \times 1 \times 0.5+2.5 x 9810 x V_{\text {concrete }}=9810 x\left[4 \times 1 \times 0.5+V_{\text {concrete }}\right]$
$V_{\text {concrete }}=0.32 \mathrm{~m}^{3}$
10. Determine the specific weight and volume of an object that weighs 10 N in water and 12 N in oil of specific gravity 0.8.

Solution:
Weight of object $=\mathrm{W}$
Volume of object $=\mathrm{V}$

Weight of object - Weight in water $=$ Buoyant force due to water
$W-10=\gamma_{\text {water }} V_{\text {water diplaced }}$
$W-10=9810 V$
$W-10=9810 V$
(a)

Weight of object - Weight in oil = Buoyant force due to oil
$W-10=\gamma_{\text {oil }} V_{\text {oil diplaced }}$
$W-12=0.8 x 9810 x V$
$W-12=7848 V$
(b)

Solving a and b,
$V=0.001019 \mathrm{~m}^{3}$
$W=10+9810 \times 0.001019=19.996 \mathrm{~N}$

Specific weight of body $\left(\gamma_{b}\right)=\frac{W}{V}=\frac{19.996}{0.001019}=19623 \mathrm{~N} / \mathrm{m}^{3}$
11. To what depth will a 2.4 m diameter $\log 5 \mathrm{~m}$ long and $\mathrm{sp} \operatorname{gr} 0.4$ sink in fresh water?

Solution:
Radius (r) $=1.2 \mathrm{~m}$
Depth of floatation = DC = ?
$\mathrm{DB}=1.2 \operatorname{Cos} \theta, \mathrm{DO}=1.2 \operatorname{Sin} \theta$

Weight of log = Weight of water displaced
$\gamma_{l o g} V_{l o g}=\gamma_{\text {water }} V_{\text {water diplaced }}$
$0.4 \times 9810 x \pi x 1.2^{2} x 5=9810\left[V_{\text {sector } O A B C}-V_{2}\right.$ traingles $]$
$9810 \times 9.04=9810\left[\frac{2 \theta}{360} x \pi x 1.2^{2} x 5-2 \times 0.5 \times 1.2 \cos \theta \times 1.2 \sin \theta\right]$
$9.04=0.1256 \theta-0.72 \sin 2 \theta$
Solving by trial and errors for θ
$\theta=80$, Right side $=9.8$
$\theta=75$, Right side $=9.06$
$\theta=74.9$, Right side $=9.04$

Take $\theta=74.9$
Depth of floatation $(D C)=O C-O D=1.2-1.2 \operatorname{Sin} 74.9=0.041 \mathrm{~m}$
12. What fraction of the volume of solid piece of metal of sp gr 7.2 floats above the surface of a container of mercury of sp. gr. 13.6?

Solution:
$\mathrm{V}=$ Volume of metal
$\mathrm{V}^{\prime}=$ Volume of mercury displaced

Weight of body = Weight of mercury displaced
$\gamma_{\text {body }} V_{\text {body }}=\gamma_{\text {mercury }} V_{\text {mercury diplaced }}$
$7.2 \times 9810 \times V=13.6 \times 9810 \times V^{\prime}$
$\mathrm{V}^{\prime} / \mathrm{V}=0.53$
Fraction of volume above mercury $=1-0.53=0.47$
13. A uniform body of size $4 \mathrm{~m} \times 2 \mathrm{~m} \times 1 \mathrm{~m}$ floats in water. What is the weight of the body if the depth of immersion is 0.6 m ? Also determine the meta-centric height.

Solution:

Weight of body = Weight of water displaced

$$
=\gamma_{\text {water }} V_{\text {water diplaced }}=9810 \times 4 \times 2 \times 0.6=47088 \mathrm{~N}
$$

Position of center of buoyancy ($O B$) $=0.6 / 2=0.3 \mathrm{~m}$
Position of $\mathrm{cg}(\mathrm{OG})=1 / 2=0.5 \mathrm{~m}$

$M B=\frac{I}{V}=\frac{\frac{1}{12} \times 4 \times 2^{3}}{4 \times 2 \times 0.6}=0.556 \mathrm{~m}$
$\mathrm{BG}=0.5-0.3=0.2 \mathrm{~m}$
$\mathrm{GM}=\mathrm{MB}-\mathrm{BG}=0.556-0.2=0.356 \mathrm{~m}$
14. A solid cylinder of diameter 3 m has a height of 2 m . Find the meta-centric height of cylinder when it is floating in water with its axis vertical. The specific gravity of cylinder is 0.7.

Solution:
h = depth of immersion
Weight of body = Weight of water displaced
$\gamma_{c y l} V_{c y l}=\gamma_{\text {water }} V_{\text {water diplaced }}$
$0.7 \times 9810 x \pi x 1.5^{2} x 2=9810 x \pi x 1.5^{2} x h$
$\mathrm{h}=1.4 \mathrm{~m}$

Position of center of buoyancy ($O B$) $=1.4 / 2=0.7 \mathrm{~m}$
Position of $\mathrm{cg}(\mathrm{OG})=2 / 2=1 \mathrm{~m}$
$B G=1-0.7=0.3 \mathrm{~m}$
$M B=\frac{I}{V}=\frac{\frac{1}{4} \times \pi x 1.5^{4}}{\pi x 1.5^{2} \times 1.4}=0.4017 \mathrm{~m}$
$\mathrm{GM}=\mathrm{MB}-\mathrm{BG}=0.4017-0.3=0.1017 \mathrm{~m}$
15. A solid wood cylinder has a diameter of 0.6 m and a height of 1.2 m . The $\mathrm{sp} . \mathrm{gr}$. of the wood is 0.6 . If the cylinder is placed vertically in oil of sp.gr. 0.85, would it be stable?

Solution:
h = depth of immersion
Weight of body = Weight of oil displaced
$\gamma_{c y l} V_{c y l}=\gamma_{o i l} V_{\text {oil diplaced }}$
$0.6 x 9810 x \pi x 0.3^{2} x 1.2=0.85 x 9810 x \pi x 0.3^{2} x h$
$\mathrm{h}=0.847 \mathrm{~m}$

Position of center of buoyancy $(O B)=0.847 / 2=0.4235$
Position of $\mathrm{cg}(\mathrm{OG})=1.2 / 2=0.6 \mathrm{~m}$
$B G=0.6-0.4235=0.1765 \mathrm{~m}$
$M B=\frac{I}{V}=\frac{\frac{1}{4} \times \pi x 0.3^{4}}{\pi x 0.3^{2} \times 0.847}=0.0265 \mathrm{~m}$
$\mathrm{GM}=\mathrm{MB}-\mathrm{BG}=0.0265-0.1765=-0.15 \mathrm{~m}$
As metacentric height GM is negative, the body is unstable.
16. A body of size $3 m \times 2 m \times 2 m$ floats in water. Find the limit of weight of the body for stable equilibrium.

Solution:
$S=S p$ gr of plastic
$h=$ depth of immersion
Weight of body $=$ Weight of water displaced
$\gamma_{\text {body }} V_{\text {body }}=\gamma_{\text {water }} V_{\text {water diplaced }}$
Sx9810x3x2x2 $=9810 x 3 x 2 x h$
$h=2 S$

Position of center of buoyancy $(O B)=2 \mathrm{~S} / 2=\mathrm{S}$
Position of $\mathrm{cg}(\mathrm{OG})=2 / 2=1 \mathrm{~m}$
$B G=O G-O B=1-S$

$M B=\frac{I}{V}=\frac{\frac{1}{12} \times 3 \times 2^{3}}{3 \times 2 \times 2 S}=\frac{0.166}{S}$
$\mathrm{GM}=\mathrm{MB}-\mathrm{BG}=\frac{0.166}{S}-1+S$
For stable equilibrium, $\mathrm{GM}>0$
$\frac{0.166}{S}-1+S>0$
$S^{2}-S+0.166>0$
Values of S are 0.21 and 0.79
Lower limit of Weight $=\rho_{\text {body }} g V_{\text {body }}=0.21 \times 1000 \times 9.81 \times 3 \times 2 \times 2=24721 \mathrm{~N}=24.72 \mathrm{KN}$
Upper limit of weight $=\rho_{\text {body }} g V_{\text {body }}=0.79 \times 1000 \times 9.81 \times 3 \times 2 \times 2=92999 \mathrm{~N}=92.99 \mathrm{KN}$
17. A wooden cylinder of specific gravity 0.6 and circular in cross-section is required to float in oil of specific gravity 0.8. Calculate the ratio of length to diameter for the cylinder so that it will just float upright in water.

Solution:
Length of cylinder $=$ L
Diameter of cylinder = D
h = depth of immersion
Weight of body = Weight of oil displaced
$\gamma_{c y l} V_{c y l}=\gamma_{o i l} V_{\text {oil diplaced }}$
$0.6 x 9810 x \frac{\pi}{4} x D^{2} x L=0.8 x 9810 x \frac{\pi}{4} x D^{2} x h$
$\mathrm{h}=0.75 \mathrm{~L}$

Position of center of buoyancy $(O B)=0.75 \mathrm{~L} / 2=0.375 \mathrm{~L}$
Position of $\mathrm{cg}(\mathrm{OG})=\mathrm{L} / 2=0.5 \mathrm{~L}$
$B G=O G-O B=0.5 L-0.375 L=0.125 L$
$M B=\frac{I}{V}=\frac{\frac{1}{64} \times \pi x D^{4}}{\frac{\pi}{4} \times D^{2} x 0.75 L}=\frac{D^{2}}{12 L}$
$\mathrm{GM}=\mathrm{MB}-\mathrm{BG}=\frac{D^{2}}{12 L}-0.125 L$
For stable equilibrium, GM >0
$\frac{D^{2}}{12 L}-0.125 L>0$
$D^{2}-1.5 L^{2}>0$
$L^{2} / D^{2}<0.667$
L/D<0.8167
18. A solid cone of specific gravity 0.7 floats in water with its apex downwards. Determine the least apex angle of the cone for equilibrium.

Solution:
D = Dia. Of cone
$d=$ Dia. Of cone at water surface
h = Depth of immersion
H = Height of cone
2θ = Apex angle
$R=$ Radius of cone
$r=$ radius of cone at water surface

Finding depth of immersion (h)
Weight of cone $=$ Weight of water displaced
$\gamma_{\text {cone }} V_{\text {cone }}=\gamma_{\text {water }} V_{\text {water diplaced }}$
$0.7 x 9810 x \frac{1}{3} x \pi x R^{2} x H=9810 x \frac{1}{3} x \pi x r^{2} x h$
$h=\frac{o .7 R^{2} H}{r^{2}}$
$h=\frac{o .7(H \operatorname{Tan} \theta)^{2} H}{(h \operatorname{Tan} \theta)^{2}}$
$\mathrm{h}=0.8879 \mathrm{H}$
$\mathrm{OG}=\frac{3}{4} H=0.75 \mathrm{H}$
$\mathrm{OB}=\frac{3}{4} h=0.75 \times 0.8879 \mathrm{H}=0.6659 \mathrm{H}$
$\mathrm{BG}=\mathrm{OG}-\mathrm{OB}=0.75 \mathrm{H}-0.6659 \mathrm{H}=0.0841 \mathrm{H}$
$M B=\frac{I}{V}=\frac{\frac{1}{4} x \pi x r^{4}}{\frac{1}{3} x \pi x r^{2} x h}=\frac{0.75 r^{2}}{h}$
$=\frac{0.75(h \operatorname{Tan} \theta)^{2}}{h}=0.75 h \operatorname{Tan}^{2} \theta=0.75 x 0.8879$ HTan $^{2} \theta=0.6659$ HTan $^{2} \theta$
$\mathrm{GM}=\mathrm{MB}-\mathrm{BG}=0.6659$ HTan $^{2} \theta-0.0841 H$
For stable equilibrium $\mathrm{GM}>0$
0.6659 HTan $^{2} \theta-0.0841 H>0$
$\operatorname{Tan}^{2} \theta-0.1263>0$
$\operatorname{Tan} \theta>0.3553$
$\theta>19.56^{0}$
Least apex angle $=2 \theta=2 \times 19.56=39.12^{\circ}$
19. A cylindrical buoy 1.8 m in diameter, 1.2 m high and weighing 10.5 KN floats in salt water of density $1025 \mathrm{~kg} / \mathrm{m}^{3}$. Its CG is 0.45 m from the bottom. If a load of 3 KN is placed on the top, find the maximum height of the CG of this load above the bottom if the buoy is to remain in stable equilibrium.

Solution:
$\mathrm{G}=\mathrm{CG}$ of buoy
G1 = CG of load 3KN
G' = Combined CG of load and buoy
$h=$ depth of immersion
$B=C B$
$\mathrm{OG}=0.45 \mathrm{~m}$
OG1=?

Finding depth of immersion (h)

Weight of load and buoy = Weight of water displaced

$$
\begin{aligned}
& 10500+3000=\rho_{\text {salt water }} g V_{\text {water diplaced }} \\
& 13500=1025 x 9.81 x \pi x 0.9^{2} x h \\
& h=0.53 \mathrm{~m} \\
& O B=0.53 / 2=0.265 \mathrm{~m}
\end{aligned}
$$

$M B=\frac{I}{V}=\frac{\frac{1}{64} \times \pi x 1.8^{4}}{\frac{\pi}{4} \times 1.8^{2} \times 0.53}=0.38 \mathrm{~m}$
$\mathrm{BG}^{\prime}=\mathrm{OG}^{\prime}-\mathrm{OB}=\mathrm{OG}^{\prime}-0.265$
$\mathrm{G}^{\prime} \mathrm{M}=\mathrm{MB}-\mathrm{BG}^{\prime}=0.38-\mathrm{OG}^{\prime}+0.265=0.645-\mathrm{OG}^{\prime}$
For stable equilibrium, $\mathrm{G}^{\prime} \mathrm{M}>0$
$0.645-0 G^{\prime}>0$
OG' < 0.645m
Taking moments about O ,
$3 \times 10^{3} \times 0 \mathrm{OG} 1+10.5 \times 10^{3} \times 0.45=\left(3 \times 10^{3}+10.5 \times 10^{3}\right) \times 0.645$
$\mathrm{OG} 1=1.3275 \mathrm{~m}$
20. A plate of metal $1.1 \mathrm{mx} 1.1 \mathrm{~m} \times 2 \mathrm{~mm}$ is to be lifted up with a velocity of $0.1 \mathrm{~m} / \mathrm{s}$ through an infinitely extending gap 20 mm wide containing an oil of sp . gr. 0.9 and viscosity $2.1 \mathrm{NS} / \mathrm{m}^{2}$. Find the force required to lift the plate assuming the plate to remain midway in the gap. Assume the weight of the plate to be 30N.

Solution:
Velocity of plate $(u)=0.1 \mathrm{~m} / \mathrm{s}$
Sp. gr. of oil $=0.9$
Sp. wt. of oil $(\gamma)=0.9 \times 9810=8829 \mathrm{~N} / \mathrm{m}^{3}$
Viscosity of oil $(\mu)=2.1 \mathrm{NS} / \mathrm{m}^{2}$
Clearance on both sides $\left(d y_{1}=d y_{2}=d y\right)=9 \mathrm{~mm}=0.009 \mathrm{~m}$
Weight of plate $=30 \mathrm{~N}$
Force required to lift the plat $(F)=$?

Upthrust on the plate $=\gamma \times$ vol. of plate $=8829 \times 1.1 \times 1.1 \times 2 / 1000=21.37 \mathrm{~N}$

Viscous force on the plate $=$ Viscous force on left + Viscous force on right
$=\tau_{1} A+\tau_{2} A=\left(\tau_{1}+\tau_{2}\right) A$
$=\left(\mu \frac{d u}{d y}+\mu \frac{d u}{d y}\right) A=2 \mu \frac{d u}{d y} A=2 x 2.1 x \frac{0.1}{0.009} x 1.1 x 1.1=56.47 \mathrm{~N}$

Total force required to lift the plate $=$ Weight-Upthrust + Viscous force $=30-21.37+56.47=65.1 \mathrm{~N}$
21. A block of wood of rectangular cross-section of sides a and b, and of length L has relative density of S. If the block is to float in water with its longest axis horizontal and the length a vertical, show that for stable equilibrium $\frac{b}{a}>\sqrt{6 S(1-S)}$.

Solution:

$$
\mathrm{G}=\mathrm{CG}, \mathrm{~B}=\text { Center of buoyancy, } \mathrm{M}=\text { Metacenter }
$$

For the block to float
Wt . of block $=\mathrm{Wt}$. of water displaced
$\gamma_{\text {block }} V_{\text {block }}=\gamma_{w} V_{\text {water diplaced }}$
$\gamma_{w} S a b L=\gamma_{w} b y L$
$\mathrm{y}=\mathrm{Sa}$
$O B=\frac{S a}{2}, O G=\frac{a}{2}$
$B G=\frac{a}{2}-\frac{S a}{2}=\frac{a}{2}(1-S)$
$B M=\frac{I}{V}=\frac{\frac{1}{12} L b^{3}}{b L y}=\frac{\frac{1}{12} L b^{3}}{b L S a}=\frac{b^{2}}{12 S a}$
Metacentric height $(G M)=\frac{I}{V}-B G=\frac{b^{2}}{12 S a}-\frac{a}{2}(1-S)$
For stable equilibrium, $\mathrm{GM}>0$
$\frac{b^{2}}{12 S a}-\frac{a}{2}(1-S)>0$
$\frac{b^{2}}{12 S a}>\frac{a}{2}(1-S)$
$\frac{b}{a}>\sqrt{6 S(1-S)}$
22. Consider a homogeneous right circular cylinder of length L, radius R, and specific gravity S, floating in water $(S=1)$ with its axis vertical. Show that the body is stable is $\frac{R}{L}=[2 S(1-S)]^{1 / 2}$.

Solution:
Length of cylinder $=\mathrm{L}$
Radius of cylinder $=\mathrm{R}$
Specific gravity of cylinder $=S$
h = depth of immersion
Weight of cylinder = Weight of water displaced
$\gamma_{c y l} V_{c y l}=\gamma_{w a t e r} V_{w a t e r ~ d i p l a c e d}$
$S x 9810 x \pi x R^{2} x L=9810 x \pi x R^{2} x h$
h = SL

Position of center of buoyancy $(O B)=S L / 2$
Position of CG (OG) $=\mathrm{L} / 2$
$\mathrm{BG}=\mathrm{OG}-\mathrm{OB}=\frac{L}{2}(1-S)$
$M B=\frac{I}{V}=\frac{\frac{1}{4} x \pi x R^{4}}{\pi x R^{2} x h}=\frac{R^{2}}{4 h}=\frac{R^{2}}{4 S L}$
$\mathrm{GM}=\mathrm{MB}-\mathrm{BG}=\frac{R^{2}}{4 S L}-\frac{L}{2}(1-S)$
For stable equilibrium, $\mathrm{GM} \geq 0$
$\frac{R^{2}}{4 S L}-\frac{L}{2}(1-S)=0$
$\frac{R}{L}=[2 S(1-S)]^{1 / 2}$
23. If a solid conical buoy of height H and relative density S floats in water with axis vertical and apex upwards, show that the height above the water surface of the conical buoy is equal to $H(1-S)^{1 / 3}$.

Solution:
$R=$ Radius of cone
$r=$ Radius of cone at water surface
$y=$ Height above the water surface
$H=$ Height of cone

Weight of cone $=$ Weight of water displaced
$\gamma_{\text {cone }} V_{\text {cone }}=\gamma_{\text {water }} V_{\text {water diplaced }}$
Sx $\gamma_{\text {water }} x \frac{1}{3} \pi R^{2} H=\gamma_{\text {water }} x\left(\frac{1}{3} \pi R^{2} H-\frac{1}{3} \pi r^{2} y\right)$
$R^{2} S H=R^{2} H-r^{2} y$
$y=\frac{R^{2}}{r^{2}} H(1-S)$
(a)

From similar triangles,
$\frac{R}{r}=\frac{H}{y}$
(b)

From a and b
$y=\frac{H^{2}}{y^{2}} H(1-S)$
$y=H(1-S)^{1 / 3}$
24. A cone of base radius R and height H floats in water with the vertex downwards. If θ is the semivertex angle of the cone and h is the depth of immersion, show that for stable equilibrium $\operatorname{Sec}^{2} \theta>H /$ h.

Solution:
D = Dia. Of cone
$d=$ Dia. Of cone at water surface
h = Depth of immersion
$\mathrm{H}=$ Height of cone
2θ = Apex angle
$R=$ Radius of cone
$r=$ radius of cone at water surface

$r=h \tan \theta$
$\mathrm{OG}=\frac{3}{4} H$
$\mathrm{OB}=\frac{3}{4} h$
$\mathrm{BG}=\frac{3}{4} H-\frac{3}{4} h=0.75(H-h)$
$M B=\frac{I}{V}=\frac{\frac{1}{4} \pi r^{4}}{\frac{1}{3} \pi r^{2} h}=\frac{0.75 r^{2}}{h}=\frac{0.75(h \tan \theta)^{2}}{h}=0.75 h \tan ^{2} \theta$
$\mathrm{GM}=\frac{I}{V}-B G=0.75$ tan $^{2} \theta-0.75(H-h)$
For stable equilibrium, $\mathrm{GM}>0$
$0.75 \tan ^{2} \theta-0.75(H-h)>0$
$h \tan ^{2} \theta>(H-h)$
$h\left(1+\tan ^{2} \theta\right)>H$
$\operatorname{Sec}^{2} \theta>H / h$
25. A cone of base diameter d and height H floats in water with the axis vertical and vertex downwards.

If the $s p$ gr of the cone material is S , show that for stable equilibrium $H<\frac{1}{2}\left[\frac{d^{2} S^{1 / 3}}{1-S^{1 / 3}}\right]^{1 / 2}$.
If $S=0.7$, what would be the minimum value of R / H for stable equilibrium?

Solution:
d = Dia. Of cone
d1 =Dia. Of cone at water surface
y = Depth of immersion
H = Height of cone
2θ = Apex angle
$R=$ Radius of cone
r = radius of cone at water surface

Weight of cone $=$ Weight of water displaced
$\gamma_{\text {cone }} V_{\text {cone }}=\gamma_{\text {water }} V_{\text {water diplaced }}$
Sx $\gamma_{\text {water }} x \frac{1}{3} \frac{\pi d^{2}}{4} H=\gamma_{\text {water }} x \frac{1}{3} \frac{\pi d 1^{2}}{4} y$
$S d^{2} H=d 1^{2} y$
(a)

From similar triangles,
$\frac{R}{r}=\frac{H}{y}$
$\frac{d / 2}{d 1 / 2}=\frac{H}{y}$
$d 1=\frac{y}{H} d$
(b)

From a and b
$y=H S^{1 / 3}$
(c)
$\mathrm{OG}=\frac{3}{4} H$
$\mathrm{OB}=\frac{3}{4} y$
$\mathrm{BG}=\frac{3}{4} H-\frac{3}{4} y=\frac{3}{4}(H-y)=\frac{3}{4}\left(H-H S^{1 / 3}\right)=\frac{3}{4} H\left(1-S^{1 / 3}\right)$
$M B=\frac{I}{V}=\frac{\frac{1}{64} \pi d 1^{4}}{\frac{1 \pi d 1^{2}}{34} y}=\frac{3 d 1^{2}}{16 y}=\frac{3\left(\frac{y}{H} d\right)^{2}}{16 y}=\frac{3 d^{2} y}{16 H^{2}}=\frac{3 d^{2} H S^{1 / 3}}{16 H^{2}}=\frac{3 d^{2} S^{1 / 3}}{16 H}$
$\mathrm{GM}=\frac{I}{V}-B G=\frac{3 d^{2} S^{1 / 3}}{16 H}-\frac{3 d^{2} S^{1 / 3}}{16 H}$
For stable equilibrium, $\mathrm{GM}>0$
$\frac{3 d^{2} S^{1 / 3}}{16 H}-\frac{3}{4} H\left(1-S^{1 / 3}\right)>0$
$\frac{3 d^{2} S^{1 / 3}}{16 H}>\frac{3}{4} H\left(1-S^{1 / 3}\right)$
$H<\frac{1}{2}\left[\frac{d^{2} S^{1 / 3}}{1-S^{1 / 3}}\right]^{1 / 2}$
Numerical
$H<\frac{1}{2}\left[\frac{d^{2} S^{1 / 3}}{1-S^{1 / 3}}\right]^{1 / 2}$
$H<\frac{d}{2}\left[\frac{S^{1 / 3}}{1-S^{1 / 3}}\right]^{1 / 2}$
$H<R\left[\frac{S^{1 / 3}}{1-S^{1 / 3}}\right]^{1 / 2}$
$\frac{R}{H}>\left[\frac{1-S^{1 / 3}}{S^{1 / 3}}\right]^{1 / 2}$
Minimum value of $\frac{R}{H}=\left[\frac{1-S^{1 / 3}}{S^{1 / 3}}\right]^{1 / 2}=\left[\frac{1-0.7^{1 / 3}}{0.7^{1 / 3}}\right]^{1 / 2}=0.355$
26. A cylindrical buoy 1.25 m in diameter and 1.8 m high has a mass of 770 kg . Show that it will not float with its axis vertical in sea water of density $1025 \mathrm{~kg} / \mathrm{m}^{3}$. If one end of vertical chain is fastened to the base, find the pull required just to keep the buoy vertical. The CG of the buoy is 0.9 m from its base.

Solution:
a) $h=$ depth of immersion

Weight of body $(W)=m g=770 \times 9,81=7553.7 \mathrm{~N}$
Weight of body $=$ Weight of water displaced
$7553.7=\rho_{\text {sea water }} g V_{\text {water diplaced }}$
$7553.7=1025 \times 9.81 \times \frac{\pi}{4} x 1.25^{2} x h$
$h=0.612 \mathrm{~m}$

Position of center of buoyancy $(O B)=0.612 / 2=0.306 \mathrm{~m}$
Position of CG $(O G)=1.8 / 2=0.9 \mathrm{~m}$
$B G=0.9-0.306=0.594 m$
$M B=\frac{I}{V}=\frac{\frac{1}{64} \times \pi x 1.25^{4}}{\frac{\pi}{4} \times 1.25^{2} \times 0.612}=0.16 \mathrm{~m}$
$\mathrm{GM}=\mathrm{MB}-\mathrm{BG}=0.16-0.594=-0.434 \mathrm{~m}$
As metacentric height GM is negative, the body is unstable and it will not float with its axis vertical.
b) $\mathrm{T}=$ pull in chain

Net upthrust $(\mathrm{R})=\mathrm{T}+\mathrm{W}=(\mathrm{T}+7553.7)$

Finding new depth of immersion (h^{\prime})
Net upthrust = Weight of water displaced
$R=\rho_{\text {sea water }} g V_{\text {water diplaced }}$
$R=1025 x 9.81 x \frac{\pi}{4} x 1.25^{2} x h^{\prime}$
$h^{\prime}=0.00008 \mathrm{R}$
$O B=0.00008 \mathrm{R} / 2=0.00004(\mathrm{~T}+7553.7)$
$\mathrm{OG}=0.9 \mathrm{~m}$

$\mathrm{G}^{\prime}=$ new $C G$ due to T and W (lowered due to T)
$M B=\frac{I}{V}=\frac{\frac{1}{64} \times \pi x 1.25^{4}}{\frac{\pi}{4} \times 1.25^{2} \times 0.00008 R}=\frac{1220.7}{(\mathrm{~T}+7553.7)}$
Taking moment about O (W passing through G and R through G^{\prime})
$\mathrm{WOG}=\mathrm{ROG}{ }^{\prime}$
$7553.7 \times 0.9=(T+7553.7) \mathrm{OG}^{\prime}$
$O G^{\prime}=\frac{6798.33}{T+7553.7}$
$\mathrm{BG}^{\prime}=\mathrm{OG}^{\prime}-\mathrm{OB}=\frac{6798.33}{T+7553.7}-0.00004(T+7553.7)$
$\mathrm{GM}=\mathrm{MB}-\mathrm{BG}^{\prime}=\frac{1220.7}{(\mathrm{~T}+7553.7)}-\frac{6798.33}{T+7553.7}+0.00004(T+7553.7)$
$=\frac{-5577.63-0.00004(T+7553.7)^{2}}{T+7553.7}$

For stable equilibrium, $\mathrm{GM}>0$

$$
\frac{-5577.63+0.00004(T+7553.7)^{2}}{T+7553.7}>0
$$

T>4254.8N
27. A hollow cylinder of external radius R and internal radius r, height h and $s p$. gr. S floats in a liquid of sp. gr. S_{0}. Show that for its stable equilibrium

$$
h \leq S_{0} \sqrt{\frac{R^{2}+r^{2}}{2 S\left(S_{0}-S\right)}}
$$

Solution:
Height of cylinder $=h$
Specific gravity of liquid $=\mathrm{S}_{0}$
Specific gravity of cylinder = S
$h^{\prime}=$ depth of immersion
Weight of cylinder $=$ Weight of liquid displaced
$\gamma_{c y l} V_{c y l}=\gamma_{\text {liquid }} V_{\text {water diplaced }}$
$S x 9810 x \pi x\left(R^{2}-r^{2}\right) x h=9810 x S_{0} x \pi x\left(R^{2}-r^{2}\right) x h^{\prime}$
$h^{\prime}=\frac{S h}{S_{0}}$

Position of center of buoyancy (OB) $=\frac{S h}{2 S_{0}}$
Position of CG (OG) = h/2
$\mathrm{BG}=\mathrm{OG}-\mathrm{OB}=\frac{h}{2}-\frac{S h}{2 S_{0}}=\frac{h}{2 S_{0}}\left(S_{0}-S\right)$
$M B=\frac{I}{V}=\frac{\frac{1}{4} \times \pi x\left(R^{4}-r^{4}\right)}{\pi x\left(R^{2}-r^{2}\right) x h^{\prime}}=\frac{R^{2}+r^{2}}{4 \frac{S h}{S_{0}}}=\frac{S_{0}\left(R^{2}+r^{2}\right)}{4 S h}$
$\mathrm{GM}=\mathrm{MB}-\mathrm{BG}=\frac{S_{0}\left(R^{2}+r^{2}\right)}{4 S h}-\frac{h}{2 S_{0}}\left(S_{0}-S\right)$
For stable equilibrium, $\mathrm{GM} \geq 0$
$\frac{S_{0}\left(R^{2}+r^{2}\right)}{4 S h}-\frac{h}{2 S_{0}}\left(S_{0}-S\right) \geq 0$
$h \leq S_{0} \sqrt{\frac{R^{2}+r^{2}}{2 S\left(S_{0}-S\right)}}$

28 , The wooden beam shown in the figure is $200 \mathrm{~mm} \times 200 \mathrm{~mm}$ and 4 m long. It is hinged at A and remains in equilibrium at θ with the horizontal. Find the inclination θ. Sp . gr. of wood $=0.6$.

Solution:
Length of beam immersed under water $=y$
Weight of beam $(\mathrm{W})=\gamma_{\text {beam }} V_{\text {beam }}=0.6 \times 9810 \times(0.2 \times 0.2 \times 4)=941.76 \mathrm{~N}$
W acts at a distance of 2 m from A .

Buoyant force on the beam $\left(F_{B}\right)=$ Weight of water displaced $=\gamma_{\text {water }} V_{\text {water dispalced }}$

$$
=9810 x(0.2 x 0.2 x y)=392.4 y
$$

FB acts at a C.
$A C=4-\frac{y}{2}$

Taking moment about hinge A ,
$941.76 x 2 \cos \theta=392.4 y\left(4-\frac{y}{2}\right) \cos \theta$
$y^{2}-8 y+9.6=0$
$y=6.5,1.47$
As $y=6.5$ is not possible, $y=1.47$
$\sin \theta=\frac{1}{4-1.47}$
$\theta=23.3^{0}$

